North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pahor, N. B., Calligaris, M., Delize, P., Dodic, G., Nardin, G. \& Randaccio, L. (1976). J. Chem. Soc. Dalton Trans. pp. 2478-2483.
Pahor, N. B., Calligaris, M.. Nardin, G. \& Randaccio, L. (1978). Acta Cryst. B34, 1360-1363.
Senn, R. \& Nowacki, W. (1977). Z. Kristallogr. 145, 16-27.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Subrahmanyam, C., Seshasayee, M. \& Aravamudan, G. (1982). Cryst. Struct. Commun. 11, 1719-1723.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1511-1512

3,3-Dichloro-1,4-diphenylazetidin-2-one

Mehmet Kabak, ${ }^{\text {a }}$ Yalçin Elerman, ${ }^{\text {a }}$ Vildan Güner, ${ }^{\text {b }}$ Süleyman Yildirir ${ }^{b}$ and Tahsin Nuri Durlu ${ }^{c}$
${ }^{a}$ Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey,
${ }^{b}$ Department of Chemistry, Faculty of Sciences, Hacettepe University, 06532 Beytepe, Ankara, Turkey, and 'Department of Physics, Faculty of Art and Sciences, University of Kırıkkale, 71450 Yahsihan, Kırıkkale, Turkey. E-mail: kabak@science.ankara.edu.tr

(Received 13 January 1999: accepted 29 April 1999)

Abstract

In the crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$, the $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ plane is nearly perpendicular to the four-membered β-lactam ring [$\left.89.0(2)^{\circ}\right]$ and the $\mathrm{C}-\mathrm{C}$ bond distances in this group are 1.571 (6) and 1.543 (7) \AA. The most out-of-plane atom from the best plane of the lactam ring is the carbonyl C atom $[-0.029(5) \AA]$. The dihedral angle between the best planes of the phenyl rings is $77.4(2)^{\circ}$.

Comment

Recent developments in the field of β-lactams have shown that the essential feature of the antibacterial activity of these compounds is the presence of the β-lactam ring (azetidin-2-one) (Brady \& Gu, 1989; Takasuka et al., 1982; Manhas et al., 1988). The selectivity or activity can be decisively influenced by novel ring substituents (Sharma et al., 1994; Kumar et al., 1993). The biological activity of β-lactams has been studied by Chambers \& Doedens (1980) and structural studies have been performed by Ercan et al. (1996a,b), Ülkü et al. (1997) and Paulus et al. (1969). The four atoms of the β-lactam ring are coplanar within experimental error. This paper describes the structure of (I), a molecule containing a β-lactam ring.

(I)

The four-membered β-lactam ring of (I) is nearly planar and the maximum deviation $[-0.029(5) \AA$] is assumed by atom C 7 . The bond lengths in the lactam ring in (I) are comparable with the previous work on monocyclic azetidin-2-ones (Ercan et al., 1996a, b and references therein). The N1-C7 bond length of 1.362 (6) \AA, conjugated with the carbonyl group, is shorter than the N1-C9 and N1-C6 bond lengths [1.469(5) and 1.417 (5) \AA, respectively] and these results show a fair agreement with those of the previous studies (Ercan et al., 1996a,b; Ülkü et al., 1997). However, the OI=C7 bond length of 1.186 (6) \AA is slightly shorter than those found in the literature [1.198 (12) \AA; Allen et al., 1987].

Fig. 1. PLATON (Spek, 1996) drawing of the title molecule, showing the molecular structure and atomic labelling scheme. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of an arbitrary radius.

In the present work, the $\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 8-\mathrm{C} 9$ bond lengths [1.543 (7) and 1.571 (6) A. respectively] deviate slightly from those reported by Ercan et al. (1996a,b) and Ülkü et al. (1997) [1.536(5), 1.55 (2), 1.535 (5), 1.558 (4), 1.60 (2) and 1.566 (5) A]. The bond angle at C8 (C7-C8-C9) is $86.1(3)^{\circ}$, which is almost equal to those reported in previous work [86.3(2), 87.0 (3) and 87.1 (7) ${ }^{\circ}$; Ercan et al. (1996a,b); Ülkü et al. (1997)]. The dihedral angle formed by the phenyl rings is $77.4(2)^{\circ}$. The C1-C6 phenyl ring is nearly coplanar with the β-lactam moiety [6.0 (2) ${ }^{\circ}$] and atom C7 deviates from the plane of the aromatic ring by 0.090 (5) A. In contrast, the second phenyl ring, C10C15, makes a dihedral angle of $71.9(2)^{\circ}$ with the best
plane of the β-lactam moiety. Atom N1 was found to be 0.015 (5) \AA above the C6/C7/C9 plane, which may be due to the intramolecular interactions between $\mathrm{Ol} \cdots \mathrm{N} 1$, $\mathrm{O} 1 \cdots \mathrm{C} 8, \mathrm{~N} 1 \cdots \mathrm{Cl}$ and $\mathrm{N} 1 \cdots \mathrm{C} 8[2.352(5), 2.521$ (7), 2.422 (6) and 2.068 (5) \AA, respectively]. The sum of the bond angles about N 1 is exactly 360°.

Experimental

Solutions of benzylideneaniline ($0.01 \mathrm{~mol} ; 1.81 \mathrm{~g}$) and triethylamine ($0.02 \mathrm{~mol} ; 2.78 \mathrm{ml}$) in benzene (50 ml) were added together and stirred for 15 min . Dichloroacetyl chloride ($0.02 \mathrm{~mol} ; 1.92 \mathrm{ml}$) was added dropwise to the stirred solution. The mixture was then stirred for 1 h at room temperature. The triethylamine salts were filtered off and the title compound was recrystallized from ethanol.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$
$M_{r}=292.16$
Monoclinic
$C 2 / c$
$a=19.305$ (2) \AA
$b=5.958(1) \AA$
$c=23.847(2) \AA$
$\beta=91.989(8)^{\circ}$
$V=2741.0(5) \AA^{3}$
$Z=8$
$D_{x}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7S diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.836, T_{\text {max }}=0.912$
4488 measured reflections
4360 independent reflections
1764 reflections with
$I>3 \sigma(I)$

Refinement

Refinement on F
$R=0.057$
$w R=0.057$
$S=0.950$
1764 reflections
172 parameters
H -atom parameters not refined

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 22
reflections
$\theta=10.1-14.3^{\circ}$
$\mu=0.463 \mathrm{~mm}^{-1}$
$T=293.2 \mathrm{~K}$
Hexagonal
$0.80 \times 0.35 \times 0.20 \mathrm{~mm}$
Colourless

$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$133.2(4)$	$\mathrm{Cl1}-\mathrm{C} 8-\mathrm{C} 9$	$117.1(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 9$	$129.4(4)$	$\mathrm{Cl} 2-\mathrm{C} 8-\mathrm{C} 7$	$111.5(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9$	$97.4(3)$	$\mathrm{Cl} 2-\mathrm{C} 8-\mathrm{C} 9$	$114.0(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{Cl}$	$120.5(4)$	$\mathrm{C} 7-\mathrm{C}-\mathrm{C} 9$	$86.1(3)$
$\mathrm{N} 1-\mathrm{C}-\mathrm{C} 5$	$118.2(4)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$85.7(3)$
$\mathrm{Ol}-\mathrm{C} 7-\mathrm{N} 1$	$134.8(5)$	$\mathrm{Nl}-\mathrm{C} 9-\mathrm{C} 10$	$115.5(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$134.6(5)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{Cl} 0$	$118.3(4)$
$\mathrm{N} 1-\mathrm{C}-\mathrm{C} 8$	$90.6(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{Cl1}$	$119.8(5)$
$\mathrm{Cl}-\mathrm{C} 8-\mathrm{Cl} 2$	$110.1(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{Cl}$	$121.3(4)$
$\mathrm{Cl} 1-\mathrm{C} 8-\mathrm{C} 7$	$116.3(3)$		

The structure was solved by direct methods (Altomare et al., 1993) and expanded using Fourier techniques (Beurskens et al., 1994). The non-H atoms were refined anisotropically; H atoms were included but not refined. All H atoms were placed geometrically on the corresponding C atoms, except atom H 9 which was located from the difference Fourier map.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN for Window's (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN for Windows. Software used to prepare material for publication: TEXSAN for Windows.

VG wishes to thank the TUBITAK for financial support under project number TBAG-1690.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1319). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Altomare, A., Cascarano, M., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26. 343-350.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. \& Smits, J. M. M. (1994). The DIRDIF94 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Brady, W. T. \& Gu, Y. Q. (1989). J. Org. Chem. 54, 2834-2842.
Chambers, R. \& Doedens, R. J. (1980). Acta Cņst. B36, 1507-1510.
Ercan, F., Ülkü, D. \& Güner, V. (1996a). Acta Cřst. C52, 1779-1780.
Ercan, F., Ülkü, D. \& Güner, V. (1996b). Z. Kristallogr. 211, 735-736.
Kumar, R., Giri, S. \& Nizameddun, J. (1993). Pestic. Sci. 18, 9-13.
Manhas, M. S., Wagle, D. R., Ciang, J. \& Bose, A. K. (1988). Heterocycles, 27, 1755-1758.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows. Single Crystal Structure Analysis Software. Version 1.03. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Paulus, E. F., Kobelt, D. \& Jensen, H. (1969). Angen: Chem. Int. Ed. Engl. 8, 990-991.
Sharma, S. D., Kaur, U. \& Saluja, A. (1994). Indian J. Chem. B, 33, 624-628.
Spek, A. L. (1996). PLATON. Program for the Automated Analysis of Molecular Geometr:. Version of February 1996. University of Utrecht, The Netherlands.
Takasuka, M., Nishikawa, J. \& Tori, K. (1982). J. Antibiot. 35, 17291733.

Ülkü, D., Ercan, F. \& Güner, V. (1997). Acta Cryst. C53, 1945-1947.

