North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Pahor, N. B., Calligaris, M., Delize, P., Dodic, G., Nardin, G. & Randaccio, L. (1976). J. Chem. Soc. Dalton Trans. pp. 2478-2483.

Pahor, N. B., Calligaris, M., Nardin, G. & Randaccio, L. (1978). Acta Cryst. B34, 1360–1363.

Senn, R. & Nowacki, W. (1977). Z. Kristallogr. 145, 16-27.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Subrahmanyam, C., Seshasayee, M. & Aravamudan, G. (1982). Cryst. Struct. Commun. 11, 1719-1723.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1511-1512

3,3-Dichloro-1,4-diphenylazetidin-2-one

Mehmet Kabak, ^a Yalçın Elerman, ^a Vildan Güner, ^b Süleyman Yildirir ^b and Tahsin Nuri Durlu^c

^aDepartment of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, ^bDepartment of Chemistry, Faculty of Sciences, Hacettepe University, 06532 Beytepe, Ankara, Turkey, and ^cDepartment of Physics, Faculty of Art and Sciences, University of Kırıkkale, 71450 Yahşihan, Kırıkkale, Turkey. E-mail: kabak@science.ankara.edu.tr

(Received 13 January 1999; accepted 29 April 1999)

Abstract

In the crystal structure of the title compound, $C_{15}H_{11}Cl_2NO$, the Cl—C—Cl plane is nearly perpendicular to the four-membered β -lactam ring [89.0 (2)°] and the C—C bond distances in this group are 1.571 (6) and 1.543 (7) Å. The most out-of-plane atom from the best plane of the lactam ring is the carbonyl C atom [-0.029 (5) Å]. The dihedral angle between the best planes of the phenyl rings is 77.4 (2)°.

Comment

Recent developments in the field of β -lactams have shown that the essential feature of the antibacterial activity of these compounds is the presence of the β -lactam ring (azetidin-2-one) (Brady & Gu, 1989; Takasuka *et al.*, 1982; Manhas *et al.*, 1988). The selectivity or activity can be decisively influenced by novel ring substituents (Sharma *et al.*, 1994; Kumar *et al.*, 1993). The biological activity of β -lactams has been studied by Chambers & Doedens (1980) and structural studies have been performed by Ercan *et al.* (1996*a,b*), Ülkü *et al.* (1997) and Paulus *et al.* (1969). The four atoms of the β -lactam ring are coplanar within experimental error. This paper describes the structure of (I), a molecule containing a β -lactam ring.

The four-membered β -lactam ring of (I) is nearly planar and the maximum deviation [-0.029(5) Å] is assumed by atom C7. The bond lengths in the lactam ring in (I) are comparable with the previous work on monocyclic azetidin-2-ones (Ercan *et al.*, 1996*a*, *b* and references therein). The N1—C7 bond length of 1.362(6) Å, conjugated with the carbonyl group, is shorter than the N1—C9 and N1—C6 bond lengths [1.469(5) and 1.417(5) Å, respectively] and these results show a fair agreement with those of the previous studies (Ercan *et al.*, 1996*a*,*b*; Ülkü *et al.*, 1997). However, the O1==C7 bond length of 1.186(6) Å is slightly shorter than those found in the literature [1.198(12) Å; Allen *et al.*, 1987].

Fig. 1. *PLATON* (Spek, 1996) drawing of the title molecule, showing the molecular structure and atomic labelling scheme. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of an arbitrary radius.

In the present work, the C7—C8 and C8—C9 bond lengths [1.543 (7) and 1.571 (6) Å, respectively] deviate slightly from those reported by Ercan *et al.* (1996*a,b*) and Ülkü *et al.* (1997) [1.536 (5), 1.55 (2), 1.535 (5), 1.558 (4), 1.60 (2) and 1.566 (5) Å]. The bond angle at C8 (C7—C8—C9) is 86.1 (3)°, which is almost equal to those reported in previous work [86.3 (2), 87.0 (3) and 87.1 (7)°; Ercan *et al.* (1996*a,b*); Ülkü *et al.* (1997)]. The dihedral angle formed by the phenyl rings is 77.4 (2)°. The C1–C6 phenyl ring is nearly coplanar with the β -lactam moiety [6.0 (2)°] and atom C7 deviates from the plane of the aromatic ring by 0.090 (5) Å. In contrast, the second phenyl ring, C10– C15, makes a dihedral angle of 71.9 (2)° with the best plane of the β -lactam moiety. Atom N1 was found to be 0.015(5) Å above the C6/C7/C9 plane, which may be due to the intramolecular interactions between $O1 \cdots N1$, $O1 \cdots C8$, $N1 \cdots C1$ and $N1 \cdots C8$ [2.352(5), 2.521(7), 2.422 (6) and 2.068 (5) Å, respectively]. The sum of the bond angles about N1 is exactly 360°.

Experimental

Solutions of benzylideneaniline (0.01 mol; 1.81 g) and triethylamine (0.02 mol; 2.78 ml) in benzene (50 ml) were added together and stirred for 15 min. Dichloroacetyl chloride (0.02 mol; 1.92 ml) was added dropwise to the stirred solution. The mixture was then stirred for 1 h at room temperature. The triethylamine salts were filtered off and the title compound was recrystallized from ethanol.

Crystal data

$C_{15}H_{11}Cl_2NO$	Mo $K\alpha$ radiation
$M_r = 292.16$	$\lambda = 0.7107 \text{ Å}$
Monoclinic	Cell parameters from 22
C2/c	reflections
a = 19.305 (2) Å	$\theta = 10.1 - 14.3^{\circ}$
b = 5.958(1) Å	$\mu = 0.463 \text{ mm}^{-1}$
c = 23.847(2) Å	T = 293.2 K
$\beta = 91.989(8)^{\circ}$	Hexagonal
$V = 2741.0(5) Å^3$	$0.80 \times 0.35 \times 0.20$ mm
Z = 8	Colourless
$D_x = 1.416 \text{ Mg m}^{-3}$	
D_m not measured	

 $= -33 \rightarrow 33$

standard reflections

every 150 reflections

intensity decay: 0.11%

Rigaku AFC-7S diffractom-	$R_{\rm int} = 0.081$
eter	$\theta_{\rm max} = 30.01^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 26$
Absorption correction:	$k = 0 \rightarrow 8$
ψ scan (North <i>et al.</i> ,	$l = -33 \rightarrow 31$
1968)	3 standard ref
$T_{\rm min} = 0.836, T_{\rm max} = 0.912$	every 150 r
4488 measured reflections	intensity de
4360 independent reflections	-
1764 reflections with	
$I > 3\sigma(I)$	

Refinement

Refinement on F	Unit weights applied
R = 0.057	$(\Delta/\sigma)_{\rm max} < 0.001$
wR = 0.057	$\Delta \rho_{\rm max} = 0.31 \ {\rm e \ \AA^{-3}}$
S = 0.950	Δho_{\min} = -0.55 e Å ⁻³
1764 reflections	Extinction correction: none
172 parameters	Scattering factors from
H-atom parameters not	International Tables for
refined	Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

Cl1-C8	1.756 (5)	N1-C9	1.469 (5)
C12—C8	1.759 (4)	C7—C8	1.543 (7)
01=C7	1.186 (6)	C8—C9	1.571 (6)
N1-C6	1.417 (5)	C9C10	1.505 (6)
N1-C7	1.362 (6)		

C6—N1—C7	133.2 (4)	C11-C8-C9	117.1 (3)
C6—N1—C9	129.4 (4)	Cl2—C8—C7	111.5 (3)
C7—N1—C9	97.4 (3)	Cl2—C8—C9	114.0(3)
11-C6-C1	120.5 (4)	С7—С8—С9	86.1 (3)
11—C6—C5	118.2 (4)	N1-C9-C8	85.7 (3)
01—C7—N1	134.8 (5)	N1-C9-C10	115.5 (3)
)1—C7—C8	134.6 (5)	C8-C9-C10	118.3 (4)
11—C7—C8	90.6 (4)	C9-C10-C11	119.8 (5)
CI1—C8—CI2	110.1 (2)	C9-C10-C15	121.3 (4)
CII-C8-C7	116.3 (3)		

The structure was solved by direct methods (Altomare et al., 1993) and expanded using Fourier techniques (Beurskens et al., 1994). The non-H atoms were refined anisotropically; H atoms were included but not refined. All H atoms were placed geometrically on the corresponding C atoms, except atom H9 which was located from the difference Fourier map.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN for Windows. Software used to prepare material for publication: TEXSAN for Windows.

VG wishes to thank the TUBITAK for financial support under project number TBAG-1690.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1319). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Cascarano, M., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. & Smits, J. M. M. (1994). The DIRDIF94 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Brady, W. T. & Gu, Y. Q. (1989). J. Org. Chem. 54, 2834-2842.
- Chambers, R. & Doedens, R. J. (1980). Acta Cryst. B36, 1507-1510.
- Ercan, F., Ülkü, D. & Güner, V. (1996a). Acta Cryst. C52, 1779-1780.
- Ercan, F., Ülkü, D. & Güner, V. (1996b). Z. Kristallogr. 211, 735-736.
- Kumar, R., Giri, S. & Nizameddun, J. (1993). Pestic. Sci. 18, 9-13.
- Manhas, M. S., Wagle, D. R., Ciang, J. & Bose, A. K. (1988). Heterocycles, 27, 1755-1758.
- Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997). TEXSAN for Windows. Single Crystal Structure Analysis Software. Version 1.03. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Paulus, E. F., Kobelt, D. & Jensen, H. (1969). Angew. Chem. Int. Ed. Engl. 8, 990-991.
- Sharma, S. D., Kaur, U. & Saluja, A. (1994). Indian J. Chem. B, 33, 624-628.
- Spek, A. L. (1996). PLATON. Program for the Automated Analysis of Molecular Geometry. Version of February 1996. University of Utrecht, The Netherlands.
- Takasuka, M., Nishikawa, J. & Tori, K. (1982). J. Antibiot. 35, 1729-1733.
- Ülkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945-1947.